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Experimental results are presented for the relaxation of a two dimensional soap foam in which wall
breakage is initiated through gentle warming of the foam cell. Significantly different phenomenology
from the relaxation of nonbreaking foams is observed. At a critical “break time,” which depends on the
temperature ramping rate and initial conditions, a large scale mechanical cascade of wall rupture sets in,
leading to a rapid disintegration of the foam. In the cascade regime, whose behavior is essentially in-
dependent of the ramping rate, a dynamical scaling behavior, associated with the distribution of cell

edge lengths, is proposed.

PACS number(s): 82.70.Rr, 83.70.Hq

I. INTRODUCTION

Although the structure of evolving soap foams in two
dimensions has been recognized for quite some time to
provide valuable models of cellular structures ranging
from biological tissue to metallic grain boundaries [1], it
is only more recently that a reasonable number of de-
tailed experimental [2-4], theoretical [5-9], and numeri-
cal [10-15] studies have been performed. (A recent re-
view has been provided by Glazier and Weaire [16].) The
basic dynamics is driven by the pressure difference across
the cell boundaries and recognition of this led von Neu-
mann to his famous law for the evolution of bubble area,
namely an n-sided bubble of area a, evolves as

da,
dt

where « is a diffusion coefficient. Thus bubbles of five or
less sides shrink and those of seven or more sides grow—
a result that is borne out, for the most part, experimen-
tally. An important ingredient of the model is that the
angle between the walls joining at a vertex is 120°. When
such a foam becomes relatively ‘“wet,” Plateau borders
form around the vertices and change the angles from
120°. The way in which this influences the cell evolution
has been studied by Bolton and Weaire [12]. The actual
foam evolution is governed by more than just the von
Neumann equation (1) and must be coupled with two to-
pological processes. These are the T2 transition(s) which
correspond to the rearrangement of cell walls when the
bubble to which they are attached shrinks to zero and the

=xk(n—6), (1)
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T1 process which corresponds to a wall “‘switching.”
Both processes are important in correctly describing
foam evolution and the 7'1 transitions, in particular, may
have quite long range effects as has been demonstrated,
for example, in the numerical simulations of Herdtle and
Aref [10]. One of the most important dynamical scaling
laws is the prediction [16] (based on a simple dimensional
analysis) that the mean cell area (a ) grows as ¢! lead-
ing to the so called “scaling regime” in which all distribu-
tions, such as the normalized area distribution
P(a/{a),t), are stationary.

Here we describe results on the dynamics of breaking
Soams, namely foams in which wall rupture—hitherto
avoided—is included as one of the critical dynamical
processes. The dynamics of such foams will be shown to
be significantly different from the more traditional class
and raises a host of fascinating questions. There are a
variety of motivations for studying breaking foams.
These range from models of evolving biological structures
[17,18] to the breakup of environmentally offensive
effluent scum.

II. EXPERIMENTAL OBSERVATIONS
OF BREAKING FOAMS

In our experiments, cell breaking is caused by the effect
of gentle heating which is, in fact, provided by nothing
more than the heat generated by the light box used to il-
luminate the cell containing the foam. Two thick, circu-
lar, Plexiglas plates form the walls of the cell and washers
sandwiched between the plates set the spacing between
the plates. The cell is sealed with an O-ring forming a
circular cavity of diameter 26.35 cm (104 in.) and gap
0.238 cm (3 in.) The cavity volume is 129.82 cm’. A
thermistor is attached to the bottom plate to monitor the
temperature of the cell. High purity sodium dodecyl sul-
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fate in distilled water at a concentration of 0.02M is used
as the soap solution. In order to prepare a foam a small
volume of this solution is introduced into the cell. The
foam can then be generated by use of a peristaltic pump
(for a uniform initial bubble pattern) or by vigorous
manual shaking of the chamber (for more random initial
conditions). If the latter method is used, small nuts,
which are placed in the chamber, act as agitators and
have the effect of randomly drawing out single films
which help produce the full foam network. When a
reasonable foam configuration has been achieved, some of
the fluid in the cell may be drawn off to create a desired
degree of foam ‘““wetness” which can be approximately
controlled by measurement of the amount of fluid initial-
ly introduced and finally removed. A coarse measure of
this is provided by the total liquid to cavity ratio and a
finer scale measure is provided by the typical size of the
Plateau borders. The thickness of the cell walls makes
accurate measurement of the borders by conventional op-
tics quite difficult but rough estimates can be made and
are certainly clear to the eye. In what follows we will de-
scribe experiments performed with a relatively “dry”
foam, which corresponds to a liquid content of 0.3-0.4
cm?® and a typical initial Plateau border size of 150 um,
and a relatively “wet” foam with a liquid content of 3.0
cm? and border size of 350 um. It may be assumed that,
unless otherwise stated, all runs described correspond to
the dry foam.

Complete control over the initial foam configuration,
in terms of bubble area and distribution statistics, is
essentially impossible but with practice approximately
similar looking distributions in terms of bubble area,
number, and randomness can be generated as well as
those with more or less bubbles.

After allowing the newly generated foam to relax for a
while (to establish a uniform drainage of fluid throughout
the foam) the chamber is mounted horizontally above a
light box. Plates of various color and composition are
placed between the light box and chamber. This, com-
bined with different choices of bulbs in the light box it-
self, enables one to produce a variety of different temper-
ature ramping rates. This rather unsophisticated ar-
rangement is both surprisingly reproducible and, for our
current purposes, perfectly adequate since, as we will de-
scribe, the actual breakdown cascade—which is our pri-
mary interest here—appears to be reasonably indepen-
dent of the ramping rate. The three different rates used
in our experiments are shown in Fig. 1. For convenience
we will refer to the three rates, in obvious order, as
“low,” “medium,” and ‘“high.” Further studies with
more finely controlled ramping mechanisms will be de-
scribed elsewhere [19]. The foam chamber is illuminated
from above with a circular fluorescent bulb which gives
excellent contrast of the foam network in two dimen-
sions. A charge coupled device (CCD) camera with
(640X 480) pixel resolution mounted above the assembly
is then used to either grab individual frames for direct
storage in digitized form on a computer or feed directly
to a VCR, from which individual frames can be subse-
quently taken for analysis. A variety of programs were
developed to analyze the digitized images, e.g., to find the
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FIG. 1. Temperature ramping rates used in experiment; @,
low ramping rate; M, medium ramping rate; O, high ramping
rate.

area of individual cells and the number of length of their
sides.

A typical evolution sequence is shown in Fig. 2 corre-
sponding to a (dry) foam with an initial bubble count of
approximately 2000 bubbles and the medium ramping
rate shown in Fig. 1. It must be emphasized that whereas
a normal foam relaxation without wall rupture proceeds
over time scales of tens of hours, the breaking foam dy-
namics is completed in tens of minutes. During the first
few minutes the cellular patterns [Figs. 2(a) and Fig. 2(b)]
appear little different from those that might be seen in
traditional nonbreaking foams. There are a few rear-
rangements due to the breakage of tiny three dimensional
bubbles, nestled in the Plateau borders, which triggers off
some T'1 transitions in the immediate neighborhood. By
Fig. 2(c), however, wall rapture takes over as a major
mechanism and the subsequent sequence of cell patterns
is radically different from regular evolution. The break-
down is characterized by a cascade of wall rupture with
the breakage of cell walls causing large scale rearrange-
ments of neighboring cells which in turn generate long
range stresses over the network resulting in further
breakage and hence rapid breakdown. The cascade and
its long range correlations become particularly clear
when the recorded runs are played back at high speed.
The latter stages of the foam are characterized by nar-
row, isthmuslike regions of small bubbles into which
much of the liquid from the broken walls has drained. As
will be described in some detail below, the “breakdown
cascade” appears to have two key features: (i) a critical
“break time” which marks its onset and is sensitive to
ramping rate and initial conditions, and (ii) a subsequent
‘“universal” behavior, for a period of time, that appears
to be independent of initial conditions.

Observation of individual cell wall breakage is difficult
since these occur at (very) high speed. A casual distinc-
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FIG. 2. Sequence of enhanced images of a
breaking foam at ¢z =(a) 290 sec, (b) 590 sec, (c)
690 sec, (d) 750 sec, (e) 790 sec, and (f) 850 sec.

tion can be made between those breakages corresponding
to the “snapping” of long, relatively straight, cell walls
between bubbles of similar area and the “popping” of
rather small bubbles at the periphery of larger bubbles.

(a) (b)

(©) (@

FIG. 3. Breaking a single film, where (a) and (b) show sequen-
tial images of the snapping of a long film and (c¢) and (d) show
the bursting of a small bubble. Arrows indicate the breaking
film.

These two sequences are captured in Fig. 3. However, as
will be discussed later, we have little understanding of the
precise mechanisms governing the cell wall rapture and
hence, at this stage, do not claim any real distinction be-
tween these behaviors. A rather entertaining
phenomenon observed in our experiments with wet foams
is the appearance and movement of two-sided bubbles.
The reason why we claim the appearance of such bubbles
is as follows. Not infrequently a cell wall connected to a
(usually small) three-sided bubble breaks, leaving behind
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FIG. 4. Creation and motion of a two-sided bubble in a wet
foam. The arrows indicate the breaking of the initial three-
sided bubble and the subsequent motion of the two-sided bub-
ble.
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a small elliptical shaped cell with walls emanating from
both ends—it is this entity that we call a two-sided bub-
ble. Such a bubble then “slides” down one of these two
walls towards a vertex. On reaching the vertex it then
appears to “fill” that region, giving the appearance of a
three-sided bubble which then rapidly shrinks to zero.
This sequence is shown in Fig. 4. It is also possible for
two-sided bubbles to appear in the dry foam experiments.
However, because of the dryness of the film on which the
two-sided bubbles reside, there is no fluid mechanism al-
lowing movement of the bubble towards a vertex. The
bubble remains stationary until one of its supporting film
walls breaks. The remaining supporting wall then col-
lapses back into the isthmus of bubbles it projects from,
carrying with it the bubble which is then “absorbed” by
the isthmus.

The experiments were repeated for the three different
ramping rates shown in Fig. 1, for different initial condi-
tions characterized by initial bubble number and different
degrees of foam wetness. The gross, configurational phe-
nomenology, as characterized by the Fig. 2 sequence, is
always about the same; it is the more detailed dynamics,
such as the onset of the breakdown cascade and certain
other statistics, that are initial condition dependent. Re-
sults were found to have some sensitivity to the age (in
terms of weeks) of the soap solution and the final sets of
runs presented here were all performed with solutions of
approximately (in terms of days) the same age.

III. ANALYSIS OF EXPERIMENTAL RESULTS

One of the most obvious consequences of wall rupture
is the overall and rapid reduction in the total number of
bubbles. In Fig. 5 we show the bubble count as a func-
tion of time for the three different ramping rates. Im-
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FIG. 5. Number of bubbles (V) as a function of time for the
three distinct ramping rates for a dry foam; @, low ramping
rate; M, medium ramping rate; O, high ramping rate.
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FIG. 6. Number of bubbles (N) as a function of time for a dry
foam for varying initial bubble density. The ramping conditions
(medium) are the same in each run.

mediately apparent is the idea of the critical break time
which marks the beginning of a rapid depreciation of to-
tal bubble count: the higher the ramping rate, the earlier
the process begins. This break time is also sensitive to in-
itial conditions at a given ramping rate. In Fig. 6 we
show, for runs at the medium ramping rate, the total bub-
ble count for three different initial conditions correspond-
ing to different initial bubble number: the smaller the ini-
tial bubble density, the shorter the break time. The effect
of foam wetness on the process is shown in Fig. 7. The
evolution of the wet and dry foams with the same ramp-
ing rate and approximately the same initial bubble densi-
ty shows that the break time is significantly earlier for the
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FIG. 7. Number of bubbles (N) as function of time for both a
wet and a dry foam at same (medium) ramping rate.



BURNETT, CHAE, TAM, de ALMEIDA, AND TABOR 51

FIG. 8. Sequence of covered area images of
a breaking foam at t =290 sec (a), 590 sec (b),
690 sec (c), 750 sec (d), 790 sec (e), and 850 sec
(). Black regions correspond to bubbles of size
less than or equal to the mean bubble area.

drier foam.

A statistic that is helpful in capturing, if not defining,
the essence of the process, i.e., a breakdown cascade ini-
tiated at a critical time, is that of “percentage area
covered” (PAC). Unlike regular foams one can clearly
see during the evolution the emergence of regions of the
experimental cell that are either covered, or not covered,
by foam. This is brought out clearly by defining the PAC
as the area covered by bubbles of area less than the mean.
(This choice helps eliminate the ambiguity between iden-
tifying a region that is definitely devoid of foam as op-
posed to that which just corresponds to the space inside a
whole bubble.) In Fig. 8 we show the experimental se-
quence of Fig. 2 in which the bubbles of less than mean
area are now shaded black. In the end the picture is
dominated by the black regions corresponding to the
isthmuslike regions of small bubbles described earlier.
Most striking, however, is the plot, shown in Fig. 9, of
PAC as a function of time for the three different ramping
rates. This again reinforces the idea of a critical break
time after which the cascade of wall rupture takes over
the decimates the foam. As one might expect, the break
time is shorter for higher ramping rates. However, once
past the break time, the foam disintegration—as cap-
tured by the PAC statistic—shows, for the different
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FIG. 9. Covered area as a function of time for the three dis-
tinct ramping rates shown in Fig. 1; @, low ramping rate; M,
medium ramping rate; O, high ramping rate.
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ramping rates, similar behavior. This is manifested, at
first, by approximately similar (steep) slopes followed by a
distinct slowing down of PAC decrease.

All this suggests, as will be discussed in more detail
below, that the process can be broken into three reason-
ably distinct phases.

(i) The initial warming of the foam which results, as a
consequence of complex physical chemistry, in a
sufficient weakening of the cell walls to make them sus-
ceptible to rupture.

(ii) The subsequent breakdown cascade which appears
to be dominated by the mechanics of stress transmission
through a complex network. We identify the cascade re-
gime with the period, after the break time, for which the
disintegrating network still remains effectively “connect-
ed”. We will argue that this phase of the evolution exhib-
its a certain scaling behavior.

(iii) A final period, manifested by the slowing down of
the decrease in PAC. This seems to be associated with
the phase in which the foam has broken up into distinct
regions, all of which are relatively wet due to collection
of fluid in the walls and vertices of the bubbles. The
disconnectedness of the foam reduces the range of stress
transmission and the increase of wetness decreases the
mobility of the cell walls.

One of the standard ways of characterizing the evolu-
tion of a nonbreaking foam is through the behavior of the
cell area and its distribution function. As is easily imag-
ined, rupture allows for the rapid creation of cells with
large numbers of sides and large area, although many
very small cells are still present. In Fig. 10 we show plots
of mean cell area {a ) versus time. They show, after an
initial period of very slow growth, the expected break
time heralding a period of rapid growth corresponding to
the breakdown cascade. The behavior shown is reminis-
cent of that displayed by magnetic bubbles subjected to
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FIG. 10. Mean area as a function of time for the three dis-
tinct ramping rates shown in Fig. 1; @, low ramping rate; B
medium ramping rate; O, high ramping rate.

increasing external magnetic field [13] and quite different
from the linear growth found in the scaling regime of
nonbreaking foams. In Fig. 11 we show, for the medium
ramping rate, a sequence of probability distributions of
(normalized) area, namely P(a/{a ),t) at different times.
Inevitably the breaking foams show a long tail corre-
sponding large a /{a ). The distributions also show, at
later times, a shift towards smaller bubble areas reflecting
the structure of the regions remaining after the main
disintegration cascade. Perhaps most significant is the
steady shift in time implying no stationarity of
distribution—even over the narrow time band, whose
significance will become clear shortly, shown in Fig.
11(b). We also mention that all the distributions indicate
a characteristic length scale at each instant of time and
hence, as with regular foams, that breaking foam struc-
tures are not spatially self-similar.

In Fig. 12 we show a matching sequence of probability
distributions, P(n,t), of the numbers of cell sides. Al-
though exhibiting an initially strong peak around n =6
they exhibit the expected long tail corresponding to the
formation of large cells with very large numbers of sides.
Nonetheless, as time evolves there is a definite shift in
favor of bubbles of small side number which corresponds
to the fact that the (few) very large bubbles are surround-
ed by many few-sided (and small area) bubbles.

The distribution functions P(a/{a),t) and P(n,t)
capture the inevitable consequences of wall rupture,
namely, the appearance of bubbles with large area and

p(a/<a>)

p(al<a>)

FIG. 11. (a) Distribution of normalized area, for medium
ramping rate, in a dry breaking foam at various times during the
breakdown cascade; @, ¢ =490 sec; B, ¢t =690 sec; O, t =890
sec. (b) Same as (a) but over a narrow range of times; @, t =650
sec; Bt =710 sec; O, t =750 sec.
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FIG. 12. Distribution of number of sides in a dry breaking
foam, for medium ramping rate; @, t =390 sec; B, t =690 sec;
O, t =790 sec.

large numbers of sides which are surrounded by many
small bubbles and, as such, give little insight into the
mechanism of breakdown. If they are compared with
those found for the other ramping rates there do not
seem to be any obvious differences that could be used to
distinguish the behavior of one rate from the other.

In addition to the cell area and side number we also an-
alyze the behavior of the length [ of the sides making up a
cell. Figure 13 shows (/) versus time, for all three ramp-
ing rates, revealing an essentially linear portion (fitted by
the solid line) for a period of time after the break time.
We believe that this linear behavior, so different from the
expected square root dependence in the scaling regime of
a nonbreaking foam, to be a very significant feature of the
breakdown cascade. Figure 14 shows P(I/{I),t) for the
medium ramping rate, at a sequence of times over which
(1) is linear. It should be noted that the histograms are
not smoothed and although there is some variable spiki-
ness in the center of the distributions the tails look quite
steady, indicating that this distribution is effectively sta-
tionary in the linear growth period. If we go back to the
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FIG. 13. Mean edge length as a function of time for the three
ramping rates for a dry foam; @, low ramping rate; M, medium
ramping rate; O, high ramping rate. Solid line shows portion of
curve well fitted by a straight line.
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FIG. 14. Distribution of normalized side length, for medium
ramping rate, in a dry foam during times corresponding to
linear growth of (/); @, t =650 sec; W, 1 =710 sec; O, t =750
sec.

area distributions P(a,t) and look at these over the same
time band [i.e., as shown in Fig. 11(b)] we see a distinct
shift to the leftt We comment that this contrasting
behavior was also observed in our preliminary numerical
modeling of the breakdown cascade [20].

The second moments of the various distributions such
as the side number

pa(n)=3 (n —<{n))*P(n,t) )
and area
wla)= [(a—<a))*P(a,t)da (3)

can be useful indicators of system ‘““‘order.” In Fig. 15 we
show the evolution of u,(n) as a function of total bubble
number for the middle ramping rate. The initial rapid in-
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FIG. 15. Second moment of the number of sides as a function
of the number of bubbles in a dry breaking foam for medium
ramping rate.
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FIG. 16. Second moment of bubble area as a function of the
number of bubbles in a dry breaking foam for medium ramping
rate.

crease is consistent with the increasing disorder of the
structure. The sudden drop and subsequent rise at small-
er bubble number is a consequence of the breakup into
disjoint regions and diminution of statistical quality asso-
ciated with the drop in bubble number and appears to
have little other significance. A similar type of behavior
is also found for w,(a) as shown in Fig. 16. Although
these second moment statistics do not seem to be particu-
larly useful for breaking foams (as opposed to their value
in characterizing nonbreaking foams) they provide addi-
tional benchmarks that are helpful for testing our numer-
ical models [20].

IV. DISCUSSION: A DIFFERENT SCALING REGIME

Developing a simple law to predict the break time as a
function of ramping rate and initial conditions seems to
be rather difficult. This is in no small part due to the
complexities of the individual wall breakage mechanism.
The structure, dynamics, and rupture of thin soap films
has been the topic of study for a long time [21,22] al-
though the body of work to date does not seem directly
applicable to our case in which the bubble edges corre-
spond to films that are both thin and narrow (correspond-
ing to the plate separation in the cell). The recent lubri-
cation theoretic approaches to study the breaking of indi-
vidual, thick, films in Hele-Shaw [23] are also unlikely to
be relevant. The weakening of our cell walls due to tem-
perature ramping may well involve a number of complex
and interrelated effects. Presumably there is an increase
of fluid drainage along the walls towards the vertices
(perhaps compounded by small scale convective motions),
increased mobility of the soap molecules, and Marangoni
effects. However, the dependence of the break time on
initial bubble count and foam wetness may be manifesta-
tions of the same effect: namely, that bubble breakdown
increases the wetness of the remaining bubbles and that

initial distributions with fewer bubbles will take longer to
achieve an equivalent degree of wetness than distribu-
tions with many smaller bubbles.

The breakdown cascade, by contrast, appears to be
more amenable to analysis. For nonbreaking foams the
relaxation is characterized by a scaling regime with sta-
tionary distributions of cell properties such as the nor-
malized area distribution; namely, P(a/{a),t)
=P(a/{a)). Since the process of relaxation is dominat-
ed by diffusion, as embodied by von Neumann’s law, the
only physical parameter controlling the evolution is the
(effective) diffusion constant «. Simple dimensional
analysis tells us that length must scale as (kt)'/? and
hence area as (kt)'*°. As described in the Introduction,
this linear growth law and stationarity of area distribu-
tion (and, indeed, all other distributions) is quite well es-
tablished. The breaking dynamics occurs on a much fas-
ter time scale than the diffusive processes and « is no
longer a relevant physical parameter. In the breakdown
cascade the dominant process appears to be that of stress
transmission through the network of cell walls. A realis-
tic mechanical model for the motion of a bubble vertex,
r;, is of the form

dri_ e 4
U y,?_‘ r=r,] )

where the sum is over the adjoining vertices [24]. The
important point here is that the two physical parameters
controlling the process are now 17, the coefficient of fric-
tion per unit length of the soap film (here we assume the
friction on the film, i.e., between the film and the top and
bottom cell walls, to be isotropic and homogeneous), and
v, the surface tension. These parameters have dimen-
sions [9]=ML!'T™! and [y]=MT 2 Thus
[¥/n]=LT ! sets the characteristic velocity scale from
which we deduce that length must scale as ¢'°. We claim
this is consistent with our observed behavior (see Fig. 13)
of

(1) (t—1,)° (5)

for ¢t >t, where t, is the break time which depends on the
ramping rate and other physical parameters of the sys-
tem. Given such a scaling for (/) it is natural to investi-
gate the behavior of the mean bubble area (a ). In study-
ing how (a) behaves as a function of time one is faced
with the issue of how best to fit, on a log-log plot, the ori-
gin of time—on which results have been found to be
quite sensitive [10]. Here we take an alternative ap-
proach which enables us to directly compare results for
the different ramping rates. Rather than use time, we use
bubble number N as the measure of evolution. In Fig. 17
we plot, on a log-log scale for the three ramping rates,
(1) versus 1/N. Since {a ) is defined as the total area (of
the cell) divided by the bubble number N at time ¢, we are
thus able to compare (/) and {a) behavior directly.
Making the best fit for the portions of the curves corre-
sponding to the breakdown cascade we find that

(I)x<{a)*, (6)
where a=0.32, 0.25, 0.28 for the high, medium, and low
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FIG. 17. Log-log plot of mean edge length versus inverse
bubble number for the three ramping rates; @, low ramping
rate; M, medium ramping rate; O, high ramping rate.

ramping rates, respectively. Thus in the regions where
(1) scales like 1'° we see that (a) scales like ¢# where
B=1/a=3.12, 4.00, 3.57 for the three different ramping
rates. At first sight it might seem strange, since {I)
scales like 1'%, that {a ) does not scale like t>°. Howev-
er, this expectation is based on the experience of normal
foam evolution in which it is natural to think of there be-
ing only one characteristic length scale (set by x)—so
that any quantity with the dimensions of length, such as
the bubble edge length of the square root of the bubble
area, should behave in the same way. In the case of a
breaking foam, in which we see the creation of large area
bubbles made up of many short edges, this no longer fol-
lows and, if anything, we would expect the area to scale
as a higher power of edge length. This is what we see,
but without universality, as manifested by the different
exponents for the different ramping rates.

" We conclude with an interesting observation concern-
ing the effect of foam wetness on the dynamics of the
breakdown cascade. In Fig. 18 we show, for the same
ramping rate and approximately the same initial condi-
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FIG. 18. mean edge length as a function of time for a wet (@)
and dry (O) foam for same (medium) ramping rate.

tions, the evolution of {I) for the wet and dry foams.
The striking feature is that after the break time (which, as
expected, is much later for the wet foam) the wet foam
shows a (/) behavior which is still approximately linear
but now with a negative slope, i.e., the mean edge length
is decreasing. This raises the intriguing possibility that in
the breakdown cascade there might be a critical wetness
for which () is approximately constant. This is clearly
a topic for future investigations.

ACKNOWLEDGMENTS

W.Y.T. acknowledges support from the Alfred P.
Sloan Foundation and R.M.C.A. thanks the Program in
Applied Mathematics at the University of Arizona for its
hospitality. The authors thank D. Langevin for a valu-
able discussion concerning the properties and breakage of
thin films and A. Bertozzi for other helpful comments.

1] D. Weaire and N. Rivier, Contemp. Phys. 25, 59 (1984).
2]J. Stavans and J. Glazier, Phys. Rev. Lett. 62, 1318 (1989).
3]J. Glazier and J. Stavans, Phys. Rev. A 40, 7398 (1989).
4] J. Stavans, Phys. Rev. A 42, 5049 (1990).

] H. Flyvbjerg, Phys. Rev. E 47, 4037 (1993).

] H. Flyvbjerg, Physica A 194, 298 (1993).

] J. Stavans, Physica A 194, 307 (1993).

]1J. Stavans, E. Domany, and D. Mukamel, Europhys. Lett.
15, 479 (1991).
9] M. Marder, Phys. Rev. A 36, 438 (1987).
0] T. Herdtle and H. Aref, J. Fluid Mech. 241, 233 (1992).
1] F. Bolton and D. Weaire, Phys. Rev. Lett. 65, 3449 (1990).
2] F. Bolton and D. Weaire, Philos. Mag. B 63, 795 (1991).
13] D. Weaire, F. Bolton, P. Molho, and J. Glazier, J. Phys.

Condens. Matter 3, 2101 (1991).

[14] J. Glazier, M. Anderson, and G. Grest, Philos. Mag. B 62,
615 (1990).

(
[
[
[
(5
(6
(7
8

\
1
1
1

[
[
[
[

[15] E. Holm, J. Glazier, D. Srolovitz, and G. Grest, Phys.
Rev. A 43, 2662 (1991).

[16]J. Glazier and D. Weaire, J. Phys. Condens. Matter 4,
1867 (1992).

[17] J. Mombach, R. de Almedia, and J. Iglesias, Phys. Rev. E
47,3712 (1993).

[18] J. Mombach, R. de Almeida, and J. Iglesias, Phys. Rev. E
48, 598 (1993).

[19] W. Tam and K. Szeto (unpublished).

[20] J. Chae and M. Tabor (unpublished).

[21] A. Sonin, A. Bonfillon, and D. Langevin, J. Colloid Inter-
face Sci. 162, 323 (1994).

[22] D. Wasan et al., Prog. Surf. Sci. 39, 119 (1992).

[23] A. Bertozzi and M. Pugh (unpublished).

[24] T. Nagai, K. Kawasaki, and K. Nakanura, J. Phys. Soc.
Jpn. 57,2221 (1988).



